alexa Determination of production of nitric oxide by lower airways of humans--theory.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Hyde RW, Geigel EJ, Olszowka AJ, Krasney JA, Forster RE nd,

Abstract Share this page

Abstract Exercise and inflammatory lung disorders such as asthma and acute lung injury increase exhaled nitric oxide (NO). This finding is interpreted as a rise in production of NO by the lungs (VNO) but fails to take into account the diffusing capacity for NO (DNO) that carries NO into the pulmonary capillary blood. We have derived equations to measure VNO from the following rates, which determine NO tension in the lungs (PL) at any moment from 1) production (VNO); 2) diffusion, where DNO(PL) = rate of removal by lung capillary blood; and 3) ventilation, where V A(PL)/(PB - 47) = the rate of NO removal by alveolar ventilation (V A) and PB is barometric pressure. During open-circuit breathing when PL is not in equilibrium, d/dt PL[V(L)/ (PB - 47)] (where V(L) is volume of NO in the lower airways) = VNO - DNO(PL) - V A(PL)/(PB - 47). When PL reaches a steady state so that d/dt = 0 and V A is eliminated by rebreathing or breath holding, then PL = VNO/DNO. PL can be interpreted as NO production per unit of DNO. This equation predicts that diseases that diminish DNO but do not alter VNO will increase expired NO levels. These equations permit precise measurements of VNO that can be applied to determining factors controlling NO production by the lungs.
This article was published in J Appl Physiol (1985) and referenced in Journal of Nanomedicine & Nanotechnology

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords