alexa Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria.
Pharmaceutical Sciences

Pharmaceutical Sciences

Biochemistry & Pharmacology: Open Access

Author(s): Dasari TP, Pathakoti K, Hwang HM

Abstract Share this page

Abstract Cytotoxicity of selected metal oxide nanoparticles (MNPs) (ZnO, CuO, Co3O4 and TiO2) was investigated in Escherichia coli both under light and dark conditions. Cytotoxicity experiments were conducted with spread plate counting and the LC50 values were calculated. We determined the mechanism of toxicity via measurements of oxidative stress, reduced glutathione, lipid peroxidation, and metal ions. The overall ranking of the LC50 values was in the order of ZnO < CuO < Co3O4 < TiO2 under dark condition and ZnO < CuO < TiO2 < Co3O4 under light condition. ZnO MNPs were the most toxic among the tested nanoparticles. Our results indicate depletion of reduced glutathione level and elevation of malondialdehyde level correlated with the increase in oxidative stress. Released metal ions were found to have partial effect on the toxicity of MNPs to E. coli. In summary, the dynamic interactions of multiple mechanisms lead to the toxicity of the tested MNPs to E. coli.
This article was published in J Environ Sci (China) and referenced in Biochemistry & Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version