alexa Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency
Microbiology

Microbiology

Fermentation Technology

Author(s): Todd J, Brian Carter

Abstract Share this page

This study investigated the detoxification of a dilute acid pretreated Ponderosa pine slurry using the polyelectrolyte polyethyleneimine (PEI). The addition of polyelectrolyte to remove enzymatic and/or fermentation inhibitory compounds, that is, acetic acid, furfural, and 5-hydroxymethylfurfural (HMF), was performed either before or after enzymatic hydrolysis to determine the optimal process sequence. Negligible acetic acid, glucose, and xylose were removed regardless of where in the process the polymer addition was made. Maximum furfural and HMF separation was achieved with the addition of PEI to a clarified pre-enzymatic hydrolysis liquor, which showed that 88.3% of furfural and 66.4% of HMF could be removed. On the other hand, only 23.1% and 13.4% of furfural and HMF, respectively, were removed from a post-enzymatic hydrolysis sample; thus, the effects of enzymes, glucose, and wood solids on inhibitor removal were also investigated. The presence of solid particles >0.2 µm and unknown soluble components <10 kDa reduced inhibitory compound removal, but the presence of elevated glucose levels and enzymes (cellulases) did not affect the separation. The fermentability of detoxified versus undetoxified hydrolysate was also investigated. An ethanol yield of 92.6% of theoretical was achieved with Saccharomyces cerevisiae fermenting the detoxified hydrolyzate, while no significant ethanol was produced in the undetoxified hydrolyzate. These results indicate that PEI may provide a practical alternative for furan removal and detoxification of lignocellolosic hydrolysates, and that application before enzymatic hydrolysis minimizes separation interferences. Biotechnol. Bioeng. 2011;108:2053–2060. © 2011 Wiley Periodicals, Inc. This article was published in Biotechnology & Bioengineering and referenced in Fermentation Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords