alexa Development and characterization of a rodent model of methanol-induced retinal and optic nerve toxicity.
Toxicology

Toxicology

Journal of Clinical Toxicology

Author(s): Eells JT, Henry MM, Lewandowski MF, Seme MT, Murray TG

Abstract Share this page

Abstract Methanol is an important public health and environmental concern because of the selective actions of its neurotoxic metabolite, formic acid, on the retina, optic nerve and central nervous system. Humans and non-human primates are uniquely sensitive to methanol-induced neurotoxicity as a consequence of the limited capacity of primate species to oxidize and thus detoxify formic acid. The toxic syndrome in primates is characterized by formic acidemia, metabolic acidosis and blindness or serious visual impairment. Nonprimate species are normally resistant to the accumulation of formate and associated metabolic and visual toxicity. We have characterized retinal and optic nerve toxicity in a nonprimate model of methanol toxicity using rats in which folate-dependent formate oxidation has been selectively inhibited, allowing formate to accumulate to toxic concentrations following methanol administration. Methanol-intoxicated rats developed formic acidemia, metabolic acidosis and visual toxicity analogous to the human methanol poisoning syndrome. Visual dysfunction was manifested as reductions in the electroretinogram and the flash-evoked cortical potential which occurred coincident with blood formate accumulation. Histological studies revealed mitochondrial disruption and vacuolation in the retinal pigment epithelium, photoreceptor inner segments and optic nerve. The temporal relationship between methanol administration and the onset and development of ocular toxicity, as well as, the degree of metabolic acidosis and extent of formic acidemia in this rodent model are remarkably similar to that documented in human methanol intoxication. Moreover, the functional and morphologic findings in methanol-intoxicated rats are consistent with the hypothesis that formate acts as a mitochondrial toxin in the retina and optic nerve. The establishment and characterization of this nonprimate animal model of methanol intoxication will facilitate research into the mechanistic aspects of methanol toxicity and the development and testing of treatments for human methanol poisoning.
This article was published in Neurotoxicology and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords