alexa Development of a master-slave robot system for farm operations
Engineering

Engineering

Advances in Robotics & Automation

Author(s): Noguchi N, Will J, Reid J, Zhang Q

Abstract Share this page

The primary objective of this study was to develop a control system for autonomous mobile robots used in farm operations. To accomplish this objective, it was necessary to develop mobile robots having minimal centralized control. This paper focuses on the development of two basic motion control algorithms, namely a GOTO algorithm and a FOLLOW algorithm, for use in a master-slave multi-robot system. These two robot motion control algorithms would have wide applicability in farm operations. The GOTO algorithm can be applied when the master wants the slave to go to a specific place, a certain distance from the current operational position. Safety is one important issue in controlling the master¡slave system because the master and the slave move independently. In this GOTO algorithm, the slave was set to slow-down to allow the master pass the slave safely in case there was a potential collision due to path overlap in the field. The slave was also able to change its path to avoid a crash based on the collaborative GOTO algorithm. The FOLLOW algorithm allows for a more cooperative way to guide the slave to follow the master at a predetermined relative distance and angle, regardless of the traveling speed and direction. This FOLLOW algorithm incorporated a nonlinear sliding mode controller to provide a robust control for the slave. The validation tests indicated that the sliding mode controller could provide a better performance in terms of both lateral offset and spacing controls compared than using a conventional PD controller. 
This article was published in Computers and Electronics in Agriculture and referenced in Advances in Robotics & Automation

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords