alexa Development of a real-time method to detect DNA degradation in forensic samples.
General Science

General Science

Journal of Forensic Research

Author(s): Nicklas JA, NoreaultConti T, Buel E, Nicklas JA, NoreaultConti T, Buel E

Abstract Share this page

Abstract Knowledge of the degradation state of evidentiary DNA samples would allow selection of the appropriate analysis method (standard short tandem repeats [STRs] vs. mini STRs vs. mtDNA). This article describes the development of a Plexor® technology/real-time PCR DNA degradation detection assay, which uses a common forward primer and two reverse primers (different fluorophores) to generate two Alu amplicons (63 and 246 bp). This very sensitive assay was optimized for reaction volume, cycle number, anneal/extend time, and temperature. Using DNA samples degraded with DNaseI, the ratio of the concentration of the short amplicon to the concentration of the long amplicon (degradation ratio) was increased versus time of degradation. Experiments were performed on a variety of environmentally degraded samples (age, sunlight, heat) and with seven commonly encountered forensic inhibitors. The degradation ratio was found to predict the observed loss of larger STR loci seen in the analysis of comprised samples. © 2011 American Academy of Forensic Sciences. This article was published in J Forensic Sci and referenced in Journal of Forensic Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

cli[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords