alexa Development of azithromycin-PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Mohammadi G, Valizadeh H, BarzegarJalali M, Lotfipour F, Adibkia K,

Abstract Share this page

Abstract The objective of the present research was to formulate poly(lactide-co-glycolide) nanoparticles loaded with azithromycin with appropriate physicochemical properties and antimicrobial activity. Azithromycin-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) were prepared in three different ratios of drug to polymer by nanoprecipitation technique. Antibacterial activity of these nanoparticles was examined against gram-negative intra cellular microorganism Salmonella typhi. The antibacterial effect was investigated using serial dilution technique to achieve the minimum inhibitory concentration (MIC) of nanoparticles. The results showed that physicochemical properties were affected by drug to polymer ratio. The results showed that nanoscale size particles ranging from 212 to 252nm were achieved. Physicochemical properties were affected by drug to polymer ratio. The highest entrapment efficiency (78.5+/-4.2\%) was obtained when the ratio of drug to polymer was 1:3. Zeta (zeta) potential of the nanoparticles was fairly negative. The DSC thermograms and X-ray diffraction patterns revealed that the drug in the nanoparticles was in amorphous state. FT-IR spectroscopy demonstrated no detectable interactions between the drug and polymer in molecular level. In vitro release study showed two phases: an initial burst for 4h followed by a very slow release pattern during a period of 24h. The results of antimicrobial activity test showed that the nanoparticles were more effective than pure azithromycin against S. typhi with the nanoparticles showing equal antibacterial effect at 1/8 concentration of the intact drug. In conclusion, the azithromycin nanoparticle preparations showed appropriate physicochemical and improved antimicrobial properties which can be useful for oral administration. This article was published in Colloids Surf B Biointerfaces and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords