alexa Development of bacterial resistance to several biocides and effects on antibiotic susceptibility


Clinical Microbiology: Open Access

Author(s): SE Walsh, JY Maillard, AD Russell, CE Catrenich, DL Charbonneau

Abstract Share this page

The aims of this study were to investigate the development of bacterial resistance to eugenol, thymol, trichlorocarbanalide (TCC), didecyldimethylammonium chloride (DDDMAC) and C10-16-alkyldimethyl, N-oxides (ADMAO) and subsequent effects on antibiotic susceptibility. An agar minimum inhibitory concentration (MIC) method was used to assess the activity of the biocides against standard bacterial strains and laboratory mutants. A range of techniques including disk diffusion and gradient plate experiments were used to attempt to develop bacterial 'resistance' or tolerance to the biocides. The mutants produced were examined for cross-resistance to the other biocides and to antibiotics via disk diffusion and gradient plate MIC methods. Outer membrane proteins of the mutants were extracted and examined using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Escherichia coli triclosan-resistant mutants were not cross-resistant to eugenol, thymol, TCC, DDDMAC and ADMAO. Mutants with elevated MICs to DDDMAC (E. coli and Pseudomonas aeruginosa), thymol (E. coli) and eugenol (E. coli) were isolated, but all remained sensitive to higher concentrations of the agents. Bacteria with elevated MICs to TCC and ADMAO were not obtained. Some low-level cross-resistance between DDDMAC, eugenol and thymol was observed with the E. coli gradient plate mutants, as well as reduced susceptibility to antibiotics, most notably chloramphenicol. The lack of cross-resistance of the triclosan mutants suggested that the mode of action of triclosan is not shared with the other biocides studied. SDS-PAGE results indicated that the DDDMAC P. aeruginosa mutant had a reduced amount (or absence) of one outer membrane protein in comparison with the standard strain. In conclusion, under laboratory conditions, bacterial exposure to thymol, eugenol and DDDMAC can lead to reduced susceptibility between selected biocidal agents and antibiotics, more specifically, chloramphenicol. However, further studies are required to determine if this is of clinical significance.

This article was published in J Hosp Infect and referenced in Clinical Microbiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version