alexa Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Rachakatla RS, Marini F, Weiss ML, Tamura M, Troyer D

Abstract Share this page

Abstract Umbilical cord matrix stem (UCMS) cells are unique stem cells derived from Wharton's jelly, which have been shown to express genes characteristic of primitive stem cells. To test the safety of these cells, human UCMS cells were injected both intravenously and subcutaneously in large numbers into severe combined immunodeficiency (SCID) mice and multiple tissues were examined for evidence of tumor formation. UCMS cells did not form gross or histological teratomas up to 50 days posttransplantation. Next, to evaluate whether UCMS cells could selectively engraft in xenotransplanted tumors, MDA 231 cells were intravenously transplanted into SCID mice, followed by intravenous transplantation of UCMS cells 1 and 2 weeks later. UCMS cells were found near or within lung tumors but not in other tissues. Finally, UCMS cells were engineered to express human interferon beta--designated 'UCMS-IFN-beta'. UCMS-IFN-beta cells were intravenously transplanted at multiple intervals into SCID mice bearing MDA 231 tumors and their effect on tumors was examined. UCMS-IFN-beta cells significantly reduced MDA 231 tumor burden in SCID mouse lungs indicated by wet weight. These results clearly indicate safety and usability of UCMS cells in cancer gene therapy. Thus, UCMS cells can potentially be used for targeted delivery of cancer therapeutics. This article was published in Cancer Gene Ther and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords