alexa Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis.

Journal of Autacoids and Hormones

Author(s): Fruttiger M

Abstract Share this page

Abstract PURPOSE: The inner vasculature of the retina develops as a spreading network, which is preceded by spindle-shaped cells. These cells are alleged to be vascular precursor cells (angioblasts). This study was designed to test whether such angioblasts exist in neonatal mouse retina. METHODS: In situ hybridization and immunohistochemistry on mouse retinal wholemount preparations were used to visualize specific vascular cell types. RESULTS: In situ hybridization with an RNA probe against vascular endothelial growth factor receptor (VEGFR)-2 (a marker for endothelial cells and angioblasts) labeled the vascular network but failed to label the spindle-shaped cells in front of it. A probe against VEGFR1, a marker for endothelial cells only, revealed the same staining pattern. Pericytes, visualized with a probe against platelet-derived growth receptor (PDGFR)-beta, were spread over the entire vessel network, but not beyond it. However, in situ hybridization with a probe against PDGFRalpha (a marker for retinal astrocytes) labeled spindle-shaped cells preceding the vessel network. CONCLUSIONS: These observations imply that in the mouse retina the spindle-shaped cells preceding the forming vasculature are immature retinal astrocytes and not vascular precursor cells and that the primary vascular network in the retina develops by angiogenesis (budding from existing vessels) and not vasculogenesis (assembly of dispersed angioblasts).
This article was published in Invest Ophthalmol Vis Sci and referenced in Journal of Autacoids and Hormones

Relevant Expert PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords