alexa Development of thin-film composite forward osmosis hollow fiber membranes using direct sulfonated polyphenylenesulfone (sPPSU) as membrane substrates.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Zhong P, Fu X, Chung TS, Weber M, Maletzko C

Abstract Share this page

Abstract This study investigates a new approach to fabricate thin-film composite (TFC) hollow fiber membranes via interfacial polymerization for forward osmosis (FO) applications. Different degrees of sulfonation of polyphenylenesulfone (PPSU) were adopted as membrane substrates to investigate their impact on water flux. It has been established that the degree of sulfonation plays a role in both creating a macrovoid-free structure and inducing hydrophilicity to bring about higher water fluxes. The fabricated membranes exhibit extremely high water fluxes of 30.6 and 82.0 LMH against a pure water feed using 2.0 M NaCl as the draw solution tested under FO and pressure retarded osmosis (PRO) modes, respectively, while maintaining low salt reverse fluxes below 12.7 gMH. The structural parameter (S) displays remarkable decreases of up to 4.5 times as the membrane substrate is switched from a nonsulfonated to sulfonated one. In addition, the newly developed TFC-FO membranes containing 1.5 mol \% sPPSU in the substrate achieves a water flux of 22 LMH in seawater desalination using a 3.5 wt \% NaCl model solution and 2.0 M NaCl as the draw solution under the PRO mode. To the best of our knowledge, this value is the highest ever reported for seawater desalination using flat and hollow fiber FO membranes. The use of sulfonated materials in the FO process opens up a frontier for sustainable and efficient production of potable water. This article was published in Environ Sci Technol and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords