alexa Developmental changes in heparan sulfate expression: in situ detection with mAbs.


Advanced Techniques in Biology & Medicine

Author(s): David G, Bai XM, Van der Schueren B, Cassiman JJ, Van den Berghe H, David G, Bai XM, Van der Schueren B, Cassiman JJ, Van den Berghe H

Abstract Share this page

Abstract Two mAbs that are specific for heparan sulfate-related epitopes have been raised and used to analyze the cellular and tissular distribution of this glycosaminoglycan during development. mAb 10E4 reacts with an epitope that occurs in native heparan sulfate chains and that is destroyed by N-desulfation of the glycosaminoglycan. The antibody does not react with hyaluronate, chondroitin sulfate, or DNA, and reacts only poorly with heparin. The reactivity of proteoglycan extracts or tissue sections with the 10E4 antibody is completely abolished by heparitinase, but is only partially affected by heparinase. mAb 3G10, in contrast, reacts only with heparitinase-treated heparan sulfate chains, proteoglycans, or tissue sections. The 3G10 epitope is destroyed by treatment with mercuric acetate, which indicates that the desaturated uronate generated by the lyase is essential for the reactivity of the antibody. The 3G10 epitope is not generated by treating heparan sulfate proteoglycans with heparinase or chondroitin sulfate proteoglycans with chondroitin sulfate lyases, which indicates that the 3G10 antibody recognizes desaturated uronates that occur in specific structural contexts. The antibody 10E4 and, after heparitinase treatment, the antibody 3G10 decorate the surfaces of many cell types and the extracellular matrix in proximity of the cells, in particular, the basement membranes. The analysis of embryonic and adult tissues reveals important temporal and regional differences in the abundance of the 10E4 and 3G10 epitopes at these sites. Moreover, the staining pattern of the two antibodies is not always superimposable, which is indicative of regional differences in the exposure or structure of the tissular heparan sulfates. As a whole the results suggest that heparan sulfate abounds at sites of active morphogenesis and that the expression of this glycosaminoglycan is developmentally regulated.
This article was published in J Cell Biol and referenced in Advanced Techniques in Biology & Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version