alexa Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme.
Molecular Biology

Molecular Biology

Journal of Cell Science & Therapy

Author(s): Wolf A, Agnihotri S, Munoz D, Guha A

Abstract Share this page

Abstract Highly proliferating cells, normal or transformed, undergo aerobic glycolysis whereby glucose is metabolized to lactate rather than by oxidative metabolism, even in the presence of oxygen. This metabolic adaptation provides a survival advantage and facilitates synthesis of biosynthetic precursors required for continued cellular proliferation. An important mediator of aerobic glycolysis is our demonstration that in malignant gliomas there is over-expression of the glycolytic enzyme hexokinase 2 (HK2), phosphorylating glucose as the first step of the glycolytic pathway. In contrast, normal brain preferentially expresses HK1 and undergoes oxidative glucose metabolism. In this study, we examine whether this switch in HK isoform also occurs in the developing embryo and central nervous system (CNS). Bioinformatic analysis of available microarray data, including that of The Cancer Genome Atlas, demonstrated a ~17\% overlap in metabolic-related genes in blastocyst stage embryo and human GBM tissue, including upregulation of HK2 and downregulation of HK1. Quantitative RT-PCR on mouse brains isolated at different embryonic and postnatal development time-points demonstrated HK2 expression was highest in the early embryo, while HK1 expression increased with CNS maturation. The downstream glycolytic enzymes PKM2 and LDHA had similar temporal profiles as HK2. Expression of the HK2 isoform was due in part to epigenetic regulation of HK2. In support, adult normal human brain and the few human GBM cell lines with low HK2 expression had methylation of CpG islands within intron 1 of HK2. In contrast, developing human fetal brain and GBM tissue expressing HK2 demonstrated significantly lower percent methylation. Furthermore, treatment of GBM cells lacking HK2 with 5-aza-2-deoxycytidine restored HK2 transcript expression. Overall, our results demonstrate that proliferative states including the developing embryo and malignant gliomas, which rely on aerobic glycolysis, preferentially express the HK2 isoform, found to be regulated in part epigenetically. Copyright © 2011 Elsevier Inc. All rights reserved. This article was published in Neurobiol Dis and referenced in Journal of Cell Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords