alexa Developmental regulation of lung liquid transport.
Immunology

Immunology

Journal of Allergy & Therapy

Author(s): Olver RE, Walters DV, M Wilson S

Abstract Share this page

Abstract The developing distal lung epithelium displays an evolving liquid transport phenotype, reflecting a changing and dynamic balance between Cl- ion secretion and Na+ ion absorption, which in turn reflects changing functional requirements. Thus in the fetus, Cl--driven liquid secretion predominates throughout gestation and generates a distending pressure to stretch the lung and stimulate growth. Increasing Na+ absorptive capacity develops toward term, anticipating the switch to an absorptive phenotype at birth and beyond. There is some empirical evidence of ligand-gated regulation of Cl- transport and of regulation via changes in the driving force for Cl- secretion. Epinephrine, O2, glucocorticoid, and thyroid hormones interact to stimulate Na+ absorption by increasing Na+ pump activity and apical Na+ conductance (GNa+) to bring about the switch from net secretion to net absorption as lung liquid is cleared from the lung at birth. Postnatally, the lung lumen contains a small Cl--based liquid secretion that generates a surface liquid layer, but the lung retains a large absorptive capacity to prevent alveolar flooding and clear edema fluid. This review explores the mechanisms underlying the functional development of the lung epithelium and draws upon evidence from classic integrative physiological studies combined with molecular physiology approaches. This article was published in Annu Rev Physiol and referenced in Journal of Allergy & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords