alexa Dexamethasone reduces oxygen induced retinopathy in a mouse model.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular and Genetic Medicine

Author(s): Rotschild T, Nandgaonkar BN, Yu K, Higgins RD

Abstract Share this page

Abstract Dexamethasone is widely used in the postnatal period. Its impact on retinopathy of prematurity (ROP) is extremely controversial; published studies have found a detrimental, protective, or no effect on ROP. The goal of this study was to test the hypothesis that use of dexamethasone during the injury phase (oxygen exposure) reduces the severity of oxygen-induced retinopathy (OIR) in a mouse model. C57BL6 mice pups were exposed to either room air or hyperoxia (75\% FiO2) from postnatal d 7 through 12 (PN7-12) with or without dexamethasone (0.5 mg/kg/d s.c.) and killed on PN17-21. Retinopathy was assessed by a scoring system of retinal flat mount preparations and periodic acid-Schiff (PAS) staining of retinal sections. Pups exposed to dexamethasone and oxygen had a lower median retinopathy score of 5 (4, 6) [median (25th, 75th quartile)] compared with animals exposed to oxygen alone with median score of 9 (6, 10) with p < 0.001. PAS staining for extra retinal neovascularization in the dexamethasone and oxygen treated animals showed a significant reduction in number of nuclei extending beyond the inner limiting membrane when compared with oxygen exposed alone (p = 0.04). Animals treated with dexamethasone had decreased weight gain compared with control animals. Dexamethasone did not appear to affect the normal development of retinal vasculature as assessed by the scoring system when compared with control animals. Thus, dexamethasone decreases severity of OIR without having an adverse effect on normal retinal vascular development in the mouse model. We speculate that dexamethasone decreases the injury response that occurs during the hyperoxic phase, thus protecting the developing vasculature and improving the subsequent retinopathy.
This article was published in Pediatr Res and referenced in Journal of Molecular and Genetic Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version