alexa Diabetes triggers a PARP1 mediated death pathway in the heart through participation of FoxO1
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Puthanveetil P, Zhang D, Wang Y, Wang F, Wan A

Abstract Share this page

Cardiomyocyte cell death is a major contributing factor for diabetic cardiomyopathy, and multiple mechanisms have been proposed for its development. We hypothesized that following diabetes, an increased nuclear presence of the Forkhead transcription factor, FoxO1, could turn on cardiac cell death through mediation of nitrosative stress. Streptozotocin (100 mg/kg) was used to induce irreversible hyperglycemia in Wistar rats, and heart tissues and blood samples extracted starting from 1 to 4 days. Diazoxide (100 mg/kg), which produced acute reversible hyperglycemia, were followed for up to 12 h. In both animal models of hyperglycemia, attenuation of survival signals was accompanied by increased nuclear FoxO1. This was accompanied by a simultaneous increase in iNOS expression and iNOS induced protein nitrosylation of GAPDH, increased GAPDH binding to Siah1 and facilitated nuclear translocation of the complex. Even though caspase-3 was cleaved during diabetes, its nitrosylation modification affected its ability to inactivate PARP. As a result, there was PARP activation followed by nuclear compartmentalization of AIF, and increased phosphatidyl serine externalization. Our data suggests a role for FoxO1 mediated iNOS induced S-nitrosylation of target proteins like GAPDH and caspase-3 in initiating cardiac cell death following hyperglycemia, and could explain the impact of glycemic control in preventing cardiovascular disease in patients with diabetes.

This article was published in J Mol Cell Cardiol. and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords