alexa Dietary protein to support anabolism with resistance exercise in young men.

Sports Nutrition and Therapy

Author(s): Phillips SM, Hartman JW, Wilkinson SB

Abstract Share this page

Abstract Resistance exercise is fundamentally anabolic and as such stimulates the process of skeletal muscle protein synthesis (MPS) in an absolute sense and relative to skeletal muscle protein breakdown (MPB). However, the net effect of resistance exercise is to shift net protein balance (NPB = MPS - MPB) to a more positive value; however, in the absence of feeding NPB remains negative. Feeding stimulates MPS to an extent where NPB becomes positive, for a transient time. When combined, resistance exercise and feeding synergistically interact to result in NPB being greater than with feeding alone. This feeding- and exercise-induced stimulation of NPB is what, albeit slowly, results in muscle hypertrophy. With this rudimentary knowledge we are now at the point where we can manipulate variables within the system to see what impact these interventions have on the processes of MPS, MPB, and NPB and ultimately and perhaps most importantly, muscle hypertrophy and strength. We used established models of skeletal muscle amino acid turnover to examine how protein source (milk versus soy) acutely affects the processes of MPS and MPB after resistance exercise. Our findings revealed that even when balanced quantities of total protein and energy are consumed that milk proteins are more effective in stimulating amino acid uptake and net protein deposition in skeletal muscle after resistance exercise than are hydrolyzed soy proteins. Importantly, the finding of increased amino acid uptake would be independent of the differences in amino acid composition of the two proteins. We propose that the improved net protein deposition with milk protein consumption is also not due to differences in amino acid composition, but is due to a different pattern of amino acid delivery associated with milk versus hydrolyzed soy proteins. If our acute findings are accurate then we hypothesized that chronically the greater net protein deposition associated with milk protein consumption post-resistance exercise would eventually lead to greater net protein accretion (i.e., muscle fiber hypertrophy), over a longer time period. In young men completing 12 weeks of resistance training (5d/wk) we observed a tendency (P = 0.11) for greater gains in whole body lean mass and whole as greater muscle fiber hypertrophy with consumption of milk. While strength gains were not different between the soy and milk-supplemented groups we would argue that the true significance of a greater increase in lean mass that we observed with milk consumption may be more important in groups of persons with lower initial lean mass and strength such as the elderly.
This article was published in J Am Coll Nutr and referenced in Sports Nutrition and Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version