alexa Dietary PUFA for preterm and term infants: review of clinical studies.


Journal of Vascular Medicine & Surgery

Author(s): Fleith M, Clandinin MT

Abstract Share this page

Abstract Human milk contains n-3 and n-6 LCPUFA (long chain polyunsaturated fatty acids), which are absent from many infant formulas. During neonatal life, there is a rapid accretion of AA (arachidonic acid) and DHA (docosahexaenoic acid) in infant brain, DHA in retina and of AA in the whole body. The DHA status of breast-fed infants is higher than that of formula-fed infants when formulas do not contain LCPUFA. Studies report that visual acuity of breast-fed infants is better than that of formula-fed infants, but other studies do not find a difference. Cognitive development of breast-fed infants is generally better, but many sociocultural confounding factors may also contribute to these differences. The effect of dietary LCPUFA on FA status, immune function, visual, cognitive, and motor functions has been evaluated in preterm and term infants. Plasma and RBC FA status of infants fed formulas supplemented with both n-3 and n-6 LCPUFA was closer to the status of breast-fed infants than to that of infants fed formulas containing no LCPUFA. Adding n-3 LCPUFA to preterm-infant formulas led to initial beneficial effects on visual acuity. Few data are available on cognitive function, but it seems that in preterm infants, feeding n-3 LCPUFA improved visual attention and cognitive development compared with infants receiving no LCPUFA. Term infants need an exogenous supply of AA and DHA to achieve similar accretion of fatty acid in plasma and RBC (red blood cell) in comparison to breast-fed infants. Fewer than half of all studies have found beneficial effects of LCPUFA on visual, mental, or psychomotor functions. Improved developmental scores at 18 mo of age have been reported for infants fed both AA and DHA. Growth, body weight, and anthropometrics of preterm and term infants fed formulas providing both n-3 and n-6 LCPUFA fatty acids is similar in most studies to that of infants fed formulas containing no LCPUFA. A larger double-blind multicenter randomized study has recently demonstrated improved growth and developmental scores in a long-term feeding study of preterm infants. Collectively, the body of literature suggests that LCPUFA is important to the growth and development of infants. Thus, for preterm infants we recommend LCPUFA intakes in the range provided by feeding of human milk typical of mothers in Western countries. This range can be achieved by a combination of AA and DHA, providing an AA to DHA ratio of approximately 1.5 and a DHA content of as much as 0.4\%. Preterm infants may benefit from slightly higher levels of these fatty acids than term infants. In long-term studies, feeding more than 0.2\% DHA and 0.3\% AA improved the status of these fatty acids for many weeks after DHA; AA was no longer present in the formula, enabling a DHA and AA status more similar to that of infants fed human milk. The addition of LCPUFA in infant formulas for term infants, with appropriate regard for quantitative and qualitative qualities, is safe and will enable the formula-fed infant to achieve the same blood LCPUFA status as that of the breast-fed infant.
This article was published in Crit Rev Food Sci Nutr and referenced in Journal of Vascular Medicine & Surgery

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 19th Annual Cardiology Conference (10 Plenary Forums - 1 Event)
    August 31-September 01, 2017 Philadelphia, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version