alexa Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Hadley KB, Newman SM, Hunt JR

Abstract Share this page

Abstract The nutritional influence of zinc on markers of bone extracellular matrix resorption and mineralization was investigated in growing rats. Thirty male weanling rats were randomly assigned to consume AIN-93G based diets containing 2.5, 5, 7.5, 15 or 30 microg Zn/g diet for 24 days. Femur zinc increased substantially as zinc increased from 5 to 15 microg/g diet and modestly between 15 and 30 microg/g (P<.05). By morphological assessment, trabecular bone increased steadily as dietary zinc increased to 30 microg/g. Increasing dietary zinc tended to decrease Zip2 expression nonsignificantly and elevated the relative expression of metallothionen-I at 15 but not 30 microg Zn/g diet. Femur osteoclastic resorption potential, indicated by matrix metalloproteinases (MMP-2 and MMP-9) and carbonic anhydrase-2 activities decreased with increasing dietary zinc. In contrast to indicators of extracellular matrix resorption, femur tartrate-resistant acid and alkaline phosphatase activities increased fourfold as dietary zinc increased from 2.5 to 30 microg Zn/g. Likewise, 15 or 30 microg Zn/g diet resulted in maximum relative expression of osteocalcin, without influencing expression of core-binding factor alpha-1, collagen Type 1 alpha-1, or nuclear factor of activated T cells c1. In conclusion, increased trabecular bone with additional zinc suggests that previous requirement estimates of 15 microg Zn/g diet may not meet nutritional needs for optimal bone development. Overall, the up-regulation of extracellular matrix modeling indexes and concomitant decrease in resorption activities as dietary zinc increased from 2.5 to 30 microg/g provide evidence of one or more physiological roles for zinc in modulating the balance between bone formation and resorption. Published by Elsevier Inc. This article was published in J Nutr Biochem and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version