alexa Different capacity of monocyte subsets to phagocytose iron-oxide nanoparticles.


Journal of Clinical & Cellular Immunology

Author(s): Settles M, Etzrodt M, Kosanke K, Schiemann M, Zimmermann A,

Abstract Share this page

Abstract OBJECTIVE: To explore the capacity of human CD1⁺CD16⁺⁺ and CD14⁺⁺CD16⁻ monocytes to phagocyte iron-oxide nanoparticles in vitro. METHODS: Human monocytes were labeled with four different magnetic nanoparticle preparations (Ferumoxides, SHU 555C, CLIO-680, MION-48) exhibiting distinct properties and cellular uptake was quantitatively assessed by flow cytometry, fluorescence microscopy, atomic absorption spectrometry and Magnetic Resonance Imaging (MRI). Additionally we determined whether cellular uptake of the nanoparticles resulted in phenotypic changes of cell surface markers. RESULTS: Cellular uptake differed between the four nanoparticle preparations. However for each nanoparticle tested, CD14⁺⁺CD16⁻ monocytes displayed a significantly higher uptake compared to CD14⁺CD16⁺⁺ monocytes, this resulted in significantly lower T1 and T2 relaxation times of these cells. The uptake of iron-oxide nanoparticles further resulted in a remarkable shift of expression of cell surface proteins indicating that the labeling procedure affects the phenotype of CD14⁺CD16⁺⁺ and CD14⁺⁺CD16⁻ monocytes differently. CONCLUSION: Human monocyte subsets internalize different magnetic nanoparticle preparations differently, resulting in variable loading capacities, imaging phenotypes and likely biological properties.
This article was published in PLoS One and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version