alexa Differential activation of the transcription factor cyclic AMP response element binding protein (CREB) in macrophages following infection with pathogenic and nonpathogenic mycobacteria and role for CREB in tumor necrosis factor alpha production.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Roach SK, Lee SB, Schorey JS

Abstract Share this page

Abstract Previous studies in our laboratory have shown a differential activation of the mitogen-activated protein kinases (MAPKs) in primary bone marrow-derived macrophages following infection with pathogenic Mycobacterium avium compared to the activation following infection with nonpathogenic Mycobacterium smegmatis. Additionally, M. smegmatis-infected macrophages produced significantly elevated levels of tumor necrosis factor alpha (TNF-alpha) compared to the levels produced by M. avium-infected macrophages. The TNF-alpha production was dependent on both p38 and extracellular signal-regulated kinase 1/2 (ERK 1/2) activation. However, the macrophage transcription factors downstream of the MAPKs, which were required for TNF-alpha production, remained undefined. In this study we determined that the transcription factor cyclic AMP response element binding protein (CREB) is significantly more activated in M. smegmatis-infected macrophages than in M. avium-infected macrophages. We also found that CREB activation was dependent on p38 and protein kinase A but not on ERK 1/2 or calmodulin kinase II. Moreover, mutating the cAMP-responsive element on the TNF-alpha promoter resulted in significantly diminished promoter activity following M. smegmatis infection but not M. avium infection. The inability of macrophages infected with M. avium to sustain MAPK activation and to produce high levels of TNF-alpha was due, in part, to an increase in serine/threonine phosphatase PP2A activity. Our studies are the first to demonstrate an important role for the transcription factor CREB in TNF-alpha production by mycobacterium-infected macrophages, as well as a role for M. avium's induction of PP2A phosphatase activity as a mechanism to limit macrophage activation.
This article was published in Infect Immun and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords