alexa Differential and trajectory methods for time course gene expression data.


Journal of Biometrics & Biostatistics

Author(s): Liang Y, Tayo B, Cai X, Kelemen A

Abstract Share this page

Abstract MOTIVATION: The issue of high dimensionality in microarray data has been, and remains, a hot topic in statistical and computational analysis. Efficient gene filtering and differentiation approaches can reduce the dimensions of data, help to remove redundant genes and noises, and highlight the most relevant genes that are major players in the development of certain diseases or the effect of drug treatment. The purpose of this study is to investigate the efficiency of parametric (including Bayesian and non-Bayesian, linear and non-linear), non-parametric and semi-parametric gene filtering methods through the application of time course microarray data from multiple sclerosis patients being treated with interferon-beta-1a. The analysis of variance with bootstrapping (parametric), class dispersion (semi-parametric) and Pareto (non-parametric) with permutation methods are presented and compared for filtering and finding differentially expressed genes. The Bayesian linear correlated model, the Bayesian non-linear model the and non-Bayesian mixed effects model with bootstrap were also developed to characterize the differential expression patterns. Furthermore, trajectory-clustering approaches were developed in order to investigate the dynamic patterns and inter-dependency of drug treatment effects on gene expression. RESULTS: Results show that the presented methods performed significant differently but all were adequate in capturing a small number of the potentially relevant genes to the disease. The parametric method, such as the mixed model and two Bayesian approaches proved to be more conservative. This may because these methods are based on overall variation in expression across all time points. The semi-parametric (class dispersion) and non-parametric (Pareto) methods were appropriate in capturing variation in expression from time point to time point, thereby making them more suitable for investigating significant monotonic changes and trajectories of changes in gene expressions in time course microarray data. Also, the non-linear Bayesian model proved to be less conservative than linear Bayesian correlated growth models to filter out the redundant genes, although the linear model showed better fit than non-linear model (smaller DIC). We also report the trajectories of significant genes-since we have been able to isolate trajectories of genes whose regulations appear to be inter-dependent.
This article was published in Bioinformatics and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version