alexa Differential genome analyses of metabolic enzymes in Pseudomonas aeruginosa for drug target identification.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Perumal D, Lim CS, Sakharkar KR, Sakharkar MK

Abstract Share this page

Abstract Complete genome sequences of several pathogenic bacteria have been determined, and many more such projects are currently under way. While these data potentially contain all the determinants of host-pathogen interactions and possible drug targets, computational tools for selecting suitable candidates for further experimental analyses are currently limited. Detection of bacterial genes that are non-homologous to human genes, and are essential for the survival of the pathogen represents a promising means of identifying novel drug targets. We used a differential pathway analyses approach (based on KEGG data) to identify essential genes from Pseudomonas aeruginosa. Our approach identified 214 unique enzymes in P. aeruginosa that may be potential drug targets and can be considered for rational drug design. About 40\% of these putative targets have been reported as essential by transposon mutagenesis data elsewhere. Homology model for one of the proteins (LpxC) is presented as a case study and can be explored for in silico docking with suitable inhibitors. This approach is a step towards facilitating the search for new antibiotics.
This article was published in In Silico Biol and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version