alexa Differential induction of apoptosis by Fas-Fas ligand interactions in human monocytes and macrophages.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Kiener PA, Davis PM, Starling GC, Mehlin C, Klebanoff SJ,

Abstract Share this page

Abstract Human monocytes undergo spontaneous apoptosis upon culture in vitro; removal of serum from the media dramatically increases the rate of this process. Monocyte apoptosis can be significantly abrogated by the addition of growth factors or proinflammatory mediators. We have evaluated the role of the endogenous Fas-Fas ligand (FasL) interaction in the induction of this spontaneous apoptosis and found that a Fas-immunoglobulin (Ig) fusion protein, an antagonistic anti-Fas monoclonal antibody and a rabbit anti-FasL antibody all greatly reduced the onset of apoptosis. The results indicate that spontaneous death of monocytes is mediated via an autocrine or paracrine pathway. Treatment of the cells with growth factors or cytokines that prevented spontaneous apoptosis had no major effects on the expression of Fas or FasL. Additionally, monocyte-derived macrophages were found to express both Fas and FasL but did not undergo spontaneous apoptosis and were not sensitive to stimulation by an agonistic anti-Fas IgM. These results indicate that protective mechanisms in these cells exist at a site downstream of the receptor-ligand interaction.
This article was published in J Exp Med and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords