alexa Differential inhibitory effects of garlic-derived organosulfur compounds on cholesterol biosynthesis in primary rat hepatocyte cultures.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Gebhardt R, Beck H

Abstract Share this page

Abstract Using primary rat hepatocyte cultures, the potency of several garlic-derived organosulfur compounds to inhibit cholesterol biosynthesis in toto as well as at early and late steps of this metabolic pathway was compared. Concerning early steps, allicin significantly inhibited incorporation of [14C]acetate into nonsaponifiable neutral lipids already at concentrations as low as 10 microM, while diallyl disulfide and allyl mercaptan were effective above 100 microM only. Likewise, inhibition in response to the two vinyl-dithiins started at 500 microM. If [14C]acetate was replaced by [14C]mevalonate, inhibition due to allicin, diallyl disulfide, and allyl mercaptan disappeared suggesting that HMGCoA-reductase was the target of inhibition. In contrast, for the vinyl-dithiins a stimulation of mevalonate incorporation was found. Concerning the late step, the potency to exert accumulation of lanosterol presumably by inhibiting lanosterol 14 alpha-demethylase decreased in the order allicin > diallyl disulfide > allyl mercaptan = 1,3-vinyl-dithiin >> 1,2-vinyldithiin, the effect of the latter compound being close to zero. With respect to the total inhibition of [14C]acetate labeling of cholesterol, the half-maximal effective concentration-value of allicin was determined to be 17 +/- 2 microM compared to 64 +/- 7 microM for diallyl disulfide and to 450 +/- 20 microM for allyl mercaptan. Cytotoxicity as determined by the lactate dehydrogenase leakage assay was slightly higher for the two vinyl-dithiins than for diallyl disulfide and allyl mercaptan, but was apparent only at concentrations higher than 10 mM and, consequently, was irrelevant for the effects described. These results demonstrate that different garlic-derived organosulfur compounds interfere differently with cholesterol biosynthesis and, thus, may provoke multiple inhibition of this metabolic pathway in response to garlic consumption. The fact that allicin was the most effective inhibitor argues against the possibility that its degradation products, namely diallyl disulfide or allyl mercapatan, might mediate its effects, a possibility that might be true, however, in the case of the vinyl-dithiins.
This article was published in Lipids and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords