alexa Differential pH and capsaicin responses of Griffonia simplicifolia IB4 (IB4)-positive and IB4-negative small sensory neurons.
Dermatology

Dermatology

Journal of Clinical & Experimental Dermatology Research

Author(s): Liu M, Willmott NJ, Michael GJ, Priestley JV, Liu M, Willmott NJ, Michael GJ, Priestley JV

Abstract Share this page

Abstract Protons play a key role in nociception caused by inflammation and ischaemia, but little is known about the relative sensitivities of different dorsal root ganglion (DRG) neurons. We have therefore examined the responses in vitro of rat DRG cells classified according to whether or not they bind Griffonia simplicifolia IB4 (IB4), a lectin which is widely used to distinguish between two major populations of small diameter neurons. Under voltage-clamp conditions, proton-activated inward currents were found in approximately 90\% of small DRG neurons and showed one of three waveforms: transient, sustained or mixed. The majority of IB4-positive (IB4+) neurons (63\%) gave rise to sustained inward currents that were sensitive to capsazepine. In contrast, the most prevalent waveform in small IB4-negative (IB4-) neurons (69\%) was a mixed response containing transient and sustained components. The transient component was inhibited by amiloride whilst the sustained component showed a variable sensitivity to capsazepine. We also found that more IB4+ cells responded to capsaicin and, on average, gave rise to a larger magnitude of response than small IB4- neurons, consistent with their higher prevalence and greater amplitude of vanilloid receptor 1 (TRPV1)-like acid responses. The increase in intracellular Ca(2+) induced by capsaicin was also slightly greater in IB4+ neurons and in these cells its magnitude correlated with the level of TRPV1 immunoreactivity. Our data suggest that acid-sensing ion channels (ASICs) and TRPV1 are the major acid-sensitive receptors in small IB4- neurons, whilst TRPV1 is the predominant one in IB4+ neurons. Because ASIC-like responses were approximately 10-fold more sensitive to changes in H(+) than TRPV1-like responses, we speculate that small IB4- rather than IB4+ neurons play an essential role in sensing acid. Our results also highlight differences in capsaicin responses between IB4+ and IB4- small neurons and reveal the close link between capsaicin responses and levels of TRPV1 expression. This article was published in Neuroscience and referenced in Journal of Clinical & Experimental Dermatology Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords