alexa Differential regulation of aldosterone synthase and 11beta-hydroxylase transcription by steroidogenic factor-1.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Bassett MH, Zhang Y, Clyne C, White PC, Rainey WE, Bassett MH, Zhang Y, Clyne C, White PC, Rainey WE

Abstract Share this page

Abstract 11beta-Hydroxylase (hCYP11B1) and aldosterone synthase (hCYP11B2) are closely related isozymes with distinct roles in cortisol and aldosterone production respectively. Aldosterone synthase catalyzes the final step in aldosterone biosynthesis and is expressed only in the zona glomerulosa of the normal adrenal. 11beta-Hydroxylase catalyzes the final reaction in the production of cortisol and is expressed at higher levels in the zona fasciculata. The mechanisms causing differential expression of these genes are not well defined. Herein, we demonstrate contrasting roles for the orphan receptor steroidogenic factor-1 (SF-1) in the regulation of human (h) CYP11B1 and hCYP11B2. Human NCI-H295R (H295R) or mouse Y-1 cells were transiently transfected with luciferase reporter constructs containing 5'-flanking regions of hCYP11B1, hCYP11B2, human 17alpha-hydroxylase (hCYP17), human cholesterol side-chain cleavage (hCYP11A1) or mouse (m) cyp11b2 (mcyp11b2). Co-transfection of vectors encoding SF-1 increased expression of hCYP11B1, hCYP11A1 and hCYP17 constructs, but inhibited hCYP11B2 reporter activity. Murine, bovine and human SF-1 were unable to increase transcription of hCYP11B2 in H295R cells. Both hCYP11B2 and mcyp11b2 promoter constructs were inhibited similarly by human SF-1. In mouse Y-1 cells, reporter expression of hCYP11B2 and mcyp11b2 was very low compared with hCYP11B1 constructs, suggesting that this adrenal cell model may not be appropriate for studies of CYP11B2. Electrophoretic mobility shift assay demonstrated that SF-1 interacted with an element from both hCYP11B1 and hCYP11B2. However, mutation of this element, termed Ad4, did not prevent agonist stimulation of hCYP11B2 by angiotensin II or forskolin but blocked activity of hCYP11B1. In some, but not all, reports of genetic linkage analysis, a naturally occurring single nucleotide polymorphism within the Ad4 element of hCYP11B2 (-344C/T) has been associated with cardiovascular disease. Herein, we have demonstrated that this polymorphism influenced binding of SF-1 in electrophoretic mobility shift assays, with the C allele binding SF-1 more strongly than the T allele. However, when hCYP11B2 constructs containing these alleles were transfected into H295R cells, there was no difference in agonist-stimulated expression or the response of either reporter construct to co-expression with human SF-1. Taken together, these data suggest that SF-1 and the Ad4 element are not major regulators of adrenal hCYP11B2 gene expression. Thus far, hCYP11B2 is the first steroid hydroxylase gene which is not positively regulated by SF-1.
  • To read the full article Visit
  • Open Access
This article was published in J Mol Endocrinol and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version