alexa Differentiation of HT22 neurons induces expression of NMDA receptor that mediates homocysteine cytotoxicity.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Zhao Z, Lu R, Zhang B, Shen J, Yang L,

Abstract Share this page

Abstract INTRODUCTION: Neurotoxic homocysteine (Hcy) is thought to be an independent risk factor for neurodegenerative diseases, including Alzheimer's disease. This study is to determine whether HT22 cells, a murine hippocampal neuronal model, can be used as an in vitro model, besides the primary neuronal cultures, to investigate the effects of Hcy. MATERIALS AND METHODS: MTS assay and Hoechst 33342/propidium iodide discrimination were used to assess the cell viability and cell death on undifferentiated and differentiated HT22 cells. Semi-quantitative reverse transcription polymerase chain reaction and western blot were used to determine the expression of N-methyl D-aspartate (NMDA) receptor. RESULTS: We found that undifferentiated and differentiated HT22 cells responded to Hcy toxicity differentially, with the undifferentiated cells resistant while the differentiated cells sensitive. The underlying mechanism appeared to be the differential expression levels of NMDA glutamate receptor between the undifferentiated and differentiated cells. Similar to what have been observed in primary neuronal cultures, the Hcy toxicity in the differentiated HT22 cells was largely attenuated by NMDA receptor antagonists, MK-801 and memantine. CONCLUSION: These results suggest for the first time that the differentiation of HT22 cells could induce the expression of NMDA receptors, which lead to Hcy mediate concentration-dependent apoptosis-necrotic continuum of HT22 cell death. The differentiation status of the HT22 cells is important for modeling neurons in vitro, with the differentiated HT22 neurons resembling more characteristics of primary hippocampal neurons while the undifferentiated HT22 cells being proliferating neuronal precursor cells. The differentiated HT22 neurons can be used as a platform to study Hcy toxicity. This article was published in Neurol Res and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords