alexa Differentiation of human liver-derived, insulin-producing cells toward the beta-cell phenotype.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Zalzman M, AnkerKitai L, Efrat S

Abstract Share this page

Abstract beta-Cell transplantation is viewed as a cure for type 1 diabetes; however, it is limited by the number of pancreas donors. Human stem cells offer the promise of an abundant source of insulin-producing cells, given the existence of methods for manipulating their differentiation. We have previously demonstrated that the expression of the beta-cell transcription factor pancreatic duodenal homeobox 1 (PDX-1) in human fetal liver cells activates multiple aspects of the beta-cell phenotype. These cells, termed FH-B-TPN cells, produce insulin, release insulin in response to physiological glucose levels, and replace beta-cell function in diabetic immunodeficient mice. However, they deviate from the normal beta-cell phenotype by the lack of expression of a number of beta-cell genes, the expression of non-beta-cell genes, and a lower insulin content. Here we aimed to promote differentiation of FH-B-TPN cells toward the beta-cell phenotype using soluble factors. Cells cultured with activin A in serum-free medium upregulated expression of NeuroD and Nkx2.2 and downregulated paired box homeotic gene 6 (PAX-6). Glucokinase and prohormone convertase 1/3 were also upregulated, whereas pancreatic polypeptide and glucagon as well as liver markers were downregulated. Insulin content was increased by up to 33-fold, to approximately 60\% of the insulin content of normal beta-cells. The cells were shown to contain human C-peptide and release insulin in response to physiological glucose levels. Cell transplantation into immunodeficient diabetic mice resulted in the restoration of stable euglycemia. The cells continued to express insulin in vivo, and no cell replication was detected. Thus, the manipulation of culture conditions induced a significant and stable differentiation of FH-B-TPN cells toward the beta-cell phenotype, making them excellent candidates for beta-cell replacement in type 1 diabetes.
This article was published in Diabetes and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords