alexa Differentiation of metabolic concentrations between gray matter and white matter of human brain by in vivo 1H magnetic resonance spectroscopy.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

International Journal of Physical Medicine & Rehabilitation

Author(s): Wang Y

Abstract Share this page

Differentiation of absolute metabolite concentrations between gray and white matter in the occipital region of normal human brain was performed by in vivo localized single-voxel 1H magnetic resonance spectroscopy at 1.5 Tesla with long echo time (136 ms). With the combination of image segmentation between white and gray matter and cerebrospinal fluid, signal compensation of T1 and T2 effects, tissue water signal as the internal concentration reference, as well as compensation by different water contents in gray and white matters, it was determined that the levels of N-acetylaspartate (NAA), creatine and/or phosphocreatine (Cr), and choline-containing compounds (Cho) in gray matter were significantly higher than in white matter. The averaged NAA, Cr, and Cho concentrations in gray matter were 11.0, 9.7, and 1.9 mM/liter, respectively, in comparison with 7.5, 5.2, and 1.6 mM/liter in white matter. These results suggest that precise composition of white and gray matter and cerebrospinal fluid is necessary to avoid partial voluming effect in a single voxel and to accurately quantify the metabolite concentrations.

This article was published in Magn Reson Med and referenced in International Journal of Physical Medicine & Rehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version