alexa Dimethoxyaurones: Potent inhibitors of ABCG2 (breast cancer resistance protein).
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Developing Drugs

Author(s): Sim HM, Lee CY, Ee PL, Go ML

Abstract Share this page

Abstract A series of 4,6-dimethoxyaurones were synthesized by reacting 4,6-dimethoxybenzofuran-3(2H)-one with various benzaldehydes in a base-catalyzed aldol reaction. A Z configuration was assigned to the aurones based on spectroscopic and crystallographic data. The aurones were tested for their ability to modulate ABCG2 (breast cancer resistance protein)-mediated multidrug resistance in vitro. Several members (0.5 microM) increased the accumulation of mitoxantrone (MX) in human breast cancer cells (MDA-MB-231) transfected with ABCG2 and re-sensitized these cells to the cytotoxic effects of MX. In the re-sensitization assay, aurones at 0.5 microM reduced the resistance of the transfected cells to MX to just twice that of the parental cells, exceeding fumitremorgin C (FTC) tested at the same concentration. The aurones (10 microM) also increased calcein-AM accumulation in MDCKII/MDR1 cells that were transfected with ABCB1 (P-glycoprotein), at levels comparable to verapamil tested at the same concentration. Structure-activity analysis showed that substitution of the benzylidene ring B of the aurone template was less important for ABCG2 inhibition, with little variation in activity noted for compounds with an unsubstituted ring B or one that was substituted. In contrast, substitution of ring B gave rise to better inhibitors of ABCB1. A preference for the 3' position of ring B was noted. There was also some indication from the data that aurones with good ABCG2 inhibitory activity were poor ABCB1 inhibitors and vice versa, but further confirmation would be required. Limited antiproliferative activity (>70\% cell survival) was observed for many aurones on four different cell lines. Thus, functionalized 4,6-dimethoxyaurones are promising ABCG2 inhibitors that combine good activity at submicromolar concentrations with limited antiproliferative activity. This article was published in Eur J Pharm Sci and referenced in Journal of Developing Drugs

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords