alexa Direct and indirect impairment of human dendritic cell function by virulent Francisella tularensis Schu S4.
General Science

General Science

Journal of Bioterrorism & Biodefense

Author(s): Chase JC, Celli J, Bosio CM, Chase JC, Celli J, Bosio CM

Abstract Share this page

Abstract The gram-negative, facultative intracellular bacterium Francisella tularensis causes acute, lethal pneumonic disease following infection with only 10 CFU. The mechanisms used by the bacterium to accomplish this in humans are unknown. Here, we demonstrate that virulent, type A F. tularensis strain Schu S4 efficiently infects and replicates in human myeloid dendritic cells (DCs). Despite exponential replication over time, Schu S4 failed to stimulate transforming growth factor beta, interleukin-10 (IL-10), IL-6, IL-1beta, IL-12, tumor necrosis factor alpha, alpha interferon (IFN-alpha), and IFN-beta throughout the course of infection. Schu S4 also suppressed the ability of directly infected DCs to respond to different Toll-like receptor agonists. Furthermore, we also observed functional inhibition of uninfected bystander cells. This inhibition was mediated, in part, by a heat-stable bacterial component. Lipopolysaccharide (LPS) from Schu S4 was present in Schu S4-conditioned medium. However, Schu S4 LPS was weakly inflammatory and failed to induce suppression of DCs at concentrations below 10 microg/ml, and depletion of Schu S4 LPS did not significantly alleviate the inhibitory effect of Schu S4-conditioned medium in uninfected human DCs. Together, these data show that type A F. tularensis interferes with the ability of a central cell type of the immune system, DCs, to alert the host of infection both intra- and extracellularly. This suggests that immune dysregulation by F. tularensis operates on a broader and more comprehensive scale than previously appreciated.
This article was published in Infect Immun and referenced in Journal of Bioterrorism & Biodefense

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords