alexa Direct binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome.
Genetics

Genetics

Single Cell Biology

Author(s): Jiang Q, Ren Y, Feng J

Abstract Share this page

Abstract Histone deacetylase 6 (HDAC6), a microtubule-associated tubulin deacetylase, plays a significant role in the formation of protein aggregates in many neurodegenerative disorders. Parkin, a protein-ubiquitin E3 ligase linked to Parkinson's disease, accumulates at the centrosome in a microtubule-dependent manner in response to proteasome inhibition. Here, we show that the centrosome recruitment of parkin was mediated by its direct binding to HDAC6 through multiple interaction domains. The tubulin deacetylase activity of HDAC6 was required for the accumulation of parkin as well as its dispersion upon the reversal of proteasome inhibition. The bidirectional movements of parkin required intact microtubule network and were dependent on dynein and kinesin 1, respectively. Tubulin deacetylation increases microtubule dynamicity and may thus facilitate microtubule-based trafficking of the parkin-HDAC6 complex. The results suggest that HDAC6 acts as a sensor of proteasome inhibition and directs the trafficking of parkin by using different motor proteins.
This article was published in J Neurosci and referenced in Single Cell Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords