alexa Direct Comparison of Virtual-Histology Intravascular Ultrasound and Optical Coherence Tomography Imaging for Identification of Thin-Cap Fibroatheroma.


Atherosclerosis: Open Access

Author(s): Brown AJ, Obaid DR, Costopoulos C, Parker RA, Calvert PA

Abstract Share this page

Background Although rupture of thin-cap fibroatheroma (TCFA) underlies most myocardial infarctions, reliable TCFA identification remains challenging. Virtual-histology intravascular ultrasound (VH-IVUS) and optical coherence tomography (OCT) can assess tissue composition and classify plaques. However, direct comparisons between VH-IVUS and OCT are lacking and it remains unknown whether combining these modalities improves TCFA identification. Methods and Results 258 regions-of-interest (ROI) were obtained from autopsied human hearts, with plaque composition and classification assessed by histology and compared with co-registered ex vivo VH-IVUS and OCT. 67 ROI were classified as fibroatheroma on histology, with 22 meeting criteria for TCFA. On VH-IVUS plaque (10.91±4.82 vs. 8.42±4.57mm2 , p=0.01) and necrotic core areas (1.59±0.99 vs. 1.03±0.85mm2 , p=0.02) were increased in TCFA vs. other fibroatheroma. On OCT, although minimal fibrous cap thickness (FCT) was similar (71.8±44.1µm vs. 72.6±32.4, p=0.30), the number of continuous frames with FCT≤85µm was higher in TCFA (6.5 [1.75-11.0] vs. 2.0 [0.0-7.0], p=0.03). Maximum lipid arc on OCT was an excellent discriminator of fibroatheroma (AUC 0.92, 95%CI 0.87-0.97) and TCFA (AUC 0.86, 95%CI 0.81-0.92), with lipid arc≥80° the optimal cutoff value. Using existing criteria, the sensitivity, specificity and diagnostic accuracy for TCFA identification was 63.6%, 78.1%, 76.5% for VH-IVUS and 72.7%, 79.8% and 79.0% for OCT. Combining VH-defined fibroatheroma and FCT≤85µm over 3 continuous frames improved TCFA identification, with diagnostic accuracy of 89.0%. Conclusions VH-IVUS and OCT can both reliably identify TCFA, although OCT accuracy may be improved using lipid arc≥80° and FCT≤85µm over 3 continuous frames. Combined VHIVUS/OCT imaging markedly improved TCFA identification.

This article was published in Circ Cardiovasc Imaging and referenced in Atherosclerosis: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

  • Donald silverberg
    Is correction of iron deficiency a new addition to the treatment of heart failure?
    PPT Version | PDF Version
  • Ahmed Zeidan
    Effects of intravenous iron in chronic kidney disease and heart failure
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Ishfaq A Bukhari
    Protective Effect of Diltiazem and Fenofibrate Against Ischemia-reperfusion Induced Cardiac Arrhythmias in the Isolated Rat Heart.
    PPT Version | PDF Version
  • A Martin Gerdes
    Wrong about β-blockers! Wrong about positive inotropes! Wrong about Thyroid Hormone treatment of Heart Failure?
    PDF Version
  • Fatih Yalcin
    PDF Version
  • Samuel C Dudley
    Novel biomarkers for diastolic heart failure
    PDF Version
  • Abdulaziz U Joury
    Acute Myocardial Infarction as First Presentation among patients with Coronary Heart Disease
    PPT Version | PDF Version
  • Helena Dominguez
    Can we protect the brain against thromboembolism during open heart surgery? LAACS project
    PDF Version
  • Saverio Gentile
    Ion channels phosphorylopathy: 3rd International Conference on Clinical & Experimental Cardiology April 15-17, 2013 A link between genomic variations and heart arrhythmia
    PDF Version

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version