alexa Direct immobilization of gold-binding antibody fragments for immunosensor applications.
Engineering

Engineering

Journal of Biosensors & Bioelectronics

Author(s): Ibii T, Kaieda M, Hatakeyama S, Shiotsuka H, Watanabe H,

Abstract Share this page

Abstract A novel method that enables antibody fragments to be immobilized on a sensor substrate with a high binding capability using molecular recognition has been developed. Using genetic engineering, we fabricated bispecific recombinant antibody fragments, which consist of two kinds of antibody fragments: a gold antibody fragment and a target molecule antibody fragment. Surface plasmon resonance (SPR) analysis indicated that these gold-binding bispecific antibody fragments bind directly to the gold substrate with high affinity (K(D) approximately 10(-9) M). About 70\% of the bispecific antibody fragments immobilized on the gold substrate retained their target protein-binding efficiency. The Sips isotherm was used to assess the heterogeneity in antibody affinity for the bispecific antibody fragments. The results showed that the immobilized bispecific antibody fragments exhibited an increased homogeneity of affinity (K(D)) to target molecules when compared with monospecific antibody fragments immobilized by conventional methods. The use of bispecific antibody fragments to directly immobilize antibody fragments on a solid-phase substrate offers a useful platform for immunosensor applications. This article was published in Anal Chem and referenced in Journal of Biosensors & Bioelectronics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords