alexa Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion.
Cardiology

Cardiology

Journal of Clinical & Experimental Cardiology

Author(s): Tsurumi Y, Takeshita S, Chen D, Kearney M, Rossow ST,

Abstract Share this page

Abstract BACKGROUND: Striated muscle has been shown to be capable of taking up and expressing foreign genes transferred in the form of naked plasmid DNA, although typically with a low level of gene expression. In the case of genes that encode secreted proteins, however, low transfection efficiency may not preclude bio-activity of the secreted gene product. Accordingly, we investigated the hypothesis that intramuscular (IM) gene therapy with naked plasmid DNA encoding vascular endothelial growth factor (VEGF) could augment collateral development and tissue perfusion in an animal model of hindlimb ischemia. METHODS AND RESULTS: Ten days after ischemia was induced in one rabbit hindlimb, 500 micrograms of phVEGF165, or the reporter gene LacZ, was injected IM into the ischemic hindlimb muscles. Thirty days later, angiographically recognizable collateral vessels and histologically identifiable capillaries were increased in VEGF transfectants compared with controls. This augmented vascularity improved perfusion to the ischemic limb, documented by a superior calf blood pressure ratio for phVEGF165 (0.85 +/- 0.05) versus controls (0.64 +/- 0.05, P < .01), improved blood flow in the ischemic limb (measured with an intra-arterial Doppler wire) at rest (phVEGF165 = 21.3 +/- 3.9 mL/min, control = 14.6 +/- 1.6 mL/min, P < .01) and after a vasodilator (phVEGF165 = 54.2 +/- 12.0 mL/min, control = 37.3 +/- 8.9 mL/min, P < .01) and increased microspheres in the adductor (phVEGF165 = 4.3 +/- 1.6 mL.min-1.100 g of tissue-1, control = 2.9 +/- 1.2 mL.min-1.100 g of tissue-1, P < .05) and gastrocnemius (phVEGF165 = 3.9 +/- 1.0 mL.min-1.100 g of tissue-1, control = 2.8 +/- 1.4 mL.min-1.100 g of tissue-1, P < .05) muscles of the ischemic limb. CONCLUSIONS: Ischemic skeletal muscle represents a promising target for gene therapy with naked plasmid DNA. IM transfection of genes encoding angiogenic cytokines, particularly those that are naturally secreted by intact cells, may constitute an alternative treatment strategy for patients with extensive peripheral vascular disease in whom the use of intravascular catheter-based gene transfer is compromised and/or prohibited.
This article was published in Circulation and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

engine[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords