alexa Directed evolution study of temperature adaptation in a psychrophilic enzyme.
Chemical Engineering

Chemical Engineering

Journal of Thermodynamics & Catalysis

Author(s): Miyazaki K, Wintrode PL, Grayling RA, Rubingh DN, Arnold FH

Abstract Share this page

Abstract We have used laboratory evolution methods to enhance the thermostability and activity of the psychrophilic protease subtilisin S41, with the goal of investigating the mechanisms by which this enzyme can adapt to different selection pressures. A combined strategy of random mutagenesis, saturation mutagenesis and in vitro recombination (DNA shuffling) was used to generate mutant libraries, which were screened to identify enzymes that acquired greater thermostability without sacrificing low-temperature activity. The half-life of seven-amino acid substitution variant 3-2G7 at 60 degrees C is approximately 500 times that of wild-type and far surpasses those of homologous mesophilic subtilisins. The dependence of half-life on calcium concentration indicates that enhanced calcium binding is largely responsible for the increased stability. The temperature optimum of the activity of 3-2G7 is shifted upward by approximately 10 degrees C. Unlike natural thermophilic enzymes, however, the activity of 3-2G7 at low temperatures was not compromised. The catalytic efficiency, k(cat)/K(M), was enhanced approximately threefold over a wide temperature range (10 to 60 degrees C). The activation energy for catalysis, determined by the temperature dependence of k(cat)/K(M) in the range 15 to 35 degrees C, is nearly identical to wild-type and close to half that of its highly similar mesophilic homolog, subtilisin SSII, indicating that the evolved S41 enzyme retained its psychrophilic character in spite of its dramatically increased thermostability. These results demonstrate that it is possible to increase activity at low temperatures and stability at high temperatures simultaneously. The fact that enzymes displaying both properties are not found in nature most likely reflects the effects of evolution, rather than any intrinsic physical-chemical limitations on proteins. Copyright 2000 Academic Press. This article was published in J Mol Biol and referenced in Journal of Thermodynamics & Catalysis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

OMICS International Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version