alexa Discovering and validating unknown phospho-sites from p38 and HuR protein kinases in vitro by Phosphoproteomic and Bioinformatic tools.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Lpez E, Lpez I, Sequ J, Ferreira A

Abstract Share this page

Abstract BACKGROUND: The mitogen activated protein kinase (MAPK) pathways are known to be deregulated in many human malignancies. Phosphopeptide identification of protein-kinases and site determination are major challenges in biomedical mass spectrometry (MS). P38 and HuR protein kinases have been reported extensively in the general principles of signalling pathways modulated by phosphorylation, mainly by molecular biology and western blotting techniques. Thus, although it has been demonstrated they are phosphorylated in different stress/stimuli conditions, the phosphopeptides and specific amino acids in which the phosphate groups are located in those protein kinases have not been shown completely. METHODS: We have combined different resins: (a) IMAC (Immobilized Metal Affinity Capture), (b) TiO2 (Titanium dioxide) and (c) SIMAC (Sequential Elution from IMAC) to isolate phosphopeptides from p38 and HuR protein kinases in vitro.Different phosphopeptide MS strategies were carried out by the LTQ ion Trap mass spectrometer (Thermo): (a) Multistage activation (MSA) and (b) Neutral loss MS3 (DDNLMS3).In addition, Molecular Dynamics (MD) bioinformatic simulation has been applied in order to simulate, over a period of time, the effects of the presence of the extra phosphate group (and the associated negative charge) in the overall structure and behaviour of the protein HuR.This study is supported by the Declaration of Helsinki and subsequent ethical guidelines. RESULTS: The combination of these techniques allowed for:(1) The identification of 6 unknown phosphopeptides of these protein kinases. (2) Amino acid site assignments of the phosphate groups from each identified phosphopeptide, including manual validation by inspection of all the spectra. (3) The analyses of the phosphopeptides discovered were carried out in four triplicate experiments to avoid false positives getting high reproducibility in all the isolated phosphopeptides recovered from both protein kinases. (4) Computer simulation using MD techniques allowed us to get functional models of both structure and interactions of the previously mentioned phosphorylated kinases and the differences between their phosphorylated and un-phosphorylated forms. CONCLUSION: Many research studies are necessary to unfold the whole signalling network (human proteome), which is so important to advance in clinical research, especially in the cases of malignant diseases.
This article was published in J Clin Bioinforma and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords