alexa Discovering clinical biomarkers of ionizing radiation exposure with serum proteomic analysis.


Journal of Cancer Clinical Trials

Author(s): Mnard C, Johann D, Lowenthal M, Muanza T, Sproull M, , Mnard C, Johann D, Lowenthal M, Muanza T, Sproull M,

Abstract Share this page

Abstract In this study, we sought to explore the merit of proteomic profiling strategies in patients with cancer before and during radiotherapy in an effort to discover clinical biomarkers of radiation exposure. Patients with a diagnosis of cancer provided informed consent for enrollment on a study permitting the collection of serum immediately before and during a course of radiation therapy. High-resolution surface-enhanced laser desorption and ionization-time of flight (SELDI-TOF) mass spectrometry (MS) was used to generate high-throughput proteomic profiles of unfractionated serum samples using an immobilized metal ion-affinity chromatography nickel-affinity chip surface. Resultant proteomic profiles were analyzed for unique biomarker signatures using supervised classification techniques. MS-based protein identification was then done on pooled sera in an effort to begin to identify specific protein fragments that are altered with radiation exposure. Sixty-eight patients with a wide range of diagnoses and radiation treatment plans provided serum samples both before and during ionizing radiation exposure. Computer-based analyses of the SELDI protein spectra could distinguish unexposed from radiation-exposed patient samples with 91\% to 100\% sensitivity and 97\% to 100\% specificity using various classifier models. The method also showed an ability to distinguish high from low dose-volume levels of exposure with a sensitivity of 83\% to 100\% and specificity of 91\% to 100\%. Using direct identity techniques of albumin-bound peptides, known to underpin the SELDI-TOF fingerprints, 23 protein fragments/peptides were uniquely detected in the radiation exposure group, including an interleukin-6 precursor protein. The composition of proteins in serum seems to change with ionizing radiation exposure. Proteomic analysis for the discovery of clinical biomarkers of radiation exposure warrants further study. This article was published in Cancer Res and referenced in Journal of Cancer Clinical Trials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version