alexa Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Zhu S

Abstract Share this page

Abstract The defensins with a conserved cysteine-stabilized alpha-helix and beta-sheet (CSalphabeta) structural motif are a group of unique antimicrobial polypeptides widely distributed in plants and animals. Recently, one defensin-like peptide (DLP) with high degree of sequence and structural similarity to defensins from ancient arthropods and molluscs has been identified in a saprophytic fungus [Mygind, P.H., Fischer, R.L., Schnorr, K.M., Hansen, M.T., Sönksen, C.P., Ludvigsen, S., Raventós, D., Buskov, S., Christensen, B., De Maria, L., Taboureau, O., Yaver, D., Elvig-Jørgensen, S.G., Sørensen, M.V., Christensen, B.E., Kjaerulff, S.K., Frimodt-Moller, N., Lehrer, R.I., Zasloff, M., Kristensen, H.-H., 2005. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437, 975-980], which poses an important question regarding the evolutionary relationships of this class of effectors of innate immunity in three eukaryotic kingdoms. Here, we report the computational identification of six families of fungal DLPs in which three known defensin types (antibacterial ancient invertebrate-type defensins (AITDs), antibacterial classical insect-type defensins (CITDs), and antifungal plant/insect-type defensins (PITDs)) can be clearly assigned. Sharing of these defensin types between animals and fungi supports their closer evolutionary relationship, consistent with the Opisthokonta Hypothesis. Conservation of the PITDs across three eukaryotic kingdoms suggests their earlier origin than the antibacterial defensins, probably preceded plants and Opisthokonta split. Finally, recognition of an early gene duplication event in the Aspergillus terreus genome allows us to establish a paralogous relationship between AITDs and CITDs, which highlights extensive lineage-specific defensin gene loss during evolution. This article was published in Mol Immunol and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords