alexa Discretization: An Enabling Technique
Biomedical Sciences

Biomedical Sciences

International Journal of Biomedical Data Mining

Author(s): Huan Liu, Farhad Hussain, Chew Lim Tan, Manoranjan Dash

Abstract Share this page

Discrete values have important roles in data mining and knowledge discovery. They are about intervals of numbers which are more concise to represent and specify, easier to use and comprehend as they are closer to a knowledge-level representation than continuous values. Many studies show induction tasks can benefit from discretization: rules with discrete values are normally shorter and more understandable and discretization can lead to improved predictive accuracy. Furthermore, many induction algorithms found in the literature require discrete features. All these prompt researchers and practitioners to discretize continuous features before or during a machine learning or data mining task. There are numerous discretization methods available in the literature. It is time for us to examine these seemingly different methods for discretization and find out how different they really are, what are the key components of a discretization process, how we can improve the current level of research for new development as well as the use of existing methods. This paper aims at a systematic study of discretization methods with their history of development, effect on classification, and trade-off between speed and accuracy. Contributions of this paper are an abstract description summarizing existing discretization methods, a hierarchical framework to categorize the existing methods and pave the way for further development, concise discussions of representative discretization methods, extensive experiments and their analysis, and some guidelines as to how to choose a discretization method under various circumstances. We also identify some issues yet to solve and future research for discretization.

  • To read the full article Visit
  • Subscription
This article was published in Data Mining and Knowledge Discovery and referenced in International Journal of Biomedical Data Mining

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version