alexa Dispersed Chromosomal Stat5b-binding elements mediate growth hormone-activated insulin-like growth factor-I gene transcription.
Agri and Aquaculture

Agri and Aquaculture

Journal of Aquaculture Research & Development

Author(s): Chia DJ, VarcoMerth B, Rotwein P

Abstract Share this page

Abstract The growth hormone (GH)-insulin-like growth factor-I (IGF-I) axis regulates somatic growth during childhood and orchestrates tissue repair throughout the life span. Recently described inactivating mutations in Stat5b in humans with impaired growth have focused attention on this transcription factor as a key agent linking GH-stimulated signals to IGF-I gene expression, and several putative Stat5b sites have been identified in the IGF-I gene. Here, we define and characterize potential GH- and Stat5b-activated chromosomal enhancers that can regulate IGF-I gene transcription. Of 89 recognizable Stat5 sequences in 200 kb centering on the rat IGF-I gene, 22 resided within conserved regions and/or were identical among different species. Only 15 of these sites, organized into 7 distinct domains, were found to bind Stat5b by quantitative chromatin immunoprecipitation assays in liver chromatin of rats, but only after acute GH treatment. These sites could bind Stat5b in vitro, and individual domains could mediate GH- and Stat5b-stimulated IGF-I promoter activity in cultured cells. Further analyses revealed that four Stat5b domains possessed chromatin signatures of enhancers, including binding of co-activators p300 and Med1, and RNA polymerase II. These modifications preceded GH-stimulated recruitment of Stat5b, as did lysine 4 monomethylation of histone H3, which was enriched in 6/7 Stat5b-binding elements. In contrast, histone acetylation was induced by GH but was limited to Stat5b binding domains found within the IGF-I transcription unit. We conclude that GH stimulates recruitment of Stat5b to multiple dispersed regions within the igf1 locus, including several with properties consistent with long range transcriptional enhancers that collectively regulate GH-activated IGF-I gene transcription.
This article was published in J Biol Chem and referenced in Journal of Aquaculture Research & Development

Relevant Expert PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords