alexa Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Gill AO, Holley RA

Abstract Share this page

Abstract The role of membrane disruption in the bactericidal activity of the plant oil aromatic compounds eugenol, carvacrol and cinnamaldehyde was investigated using confocal laser scanning microscopy, changes in ATP levels and cell viability. In 25 mM HEPES buffer pH 7 at 20 degrees C, 10 mM eugenol or carvacrol increased uptake of propidium iodide by Escherichia coli, Listeria monocytogenes and Lactobacillus sakei over a 10-min period. The same treatments resulted in lowered viability, rapid depletion of cellular ATP and release of ATP, with the exception of Lb. sakei treated with carvacrol. Eugenol or carvacrol at 5 mM to 10 mM inhibited E. coli and L. monocytogenes motility. Lb. sakei was resistant to cinnamaldehyde. Thus, its effects were only studied on E. coli and L. monocytogenes. At 10 mM, cinnamaldehyde caused a slight but statistically significant increase in propidium iodide staining of E. coli, but had no effect on L. monocytogenes. Cinnamaldehyde treatment of E. coli at 10 mM and L. monocytogenes at 40 mM resulted in decreased cellular ATP, but there was no concomitant release of ATP. Cinnamaldehyde at 5 and 10 mM inhibited E. coli and L. monocytogenes motility. Results for eugenol and carvacrol are consistent with non-specific permeabilization of the cytoplasmic membrane. Evidence for increased membrane permeability by cinnamaldehyde is less conclusive. The release of ATP from eugenol and carvacrol-treated cells and absence of release from cinnamaldehyde-treated cells could indicate that eugenol and carvacrol possess ATPase inhibiting activity. Secondary effects would also be consistent with membrane disruption. This article was published in Int J Food Microbiol and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords