alexa Disruption of the circadian timing systems: molecular mechanisms in mood disorders.
Neurology

Neurology

Journal of Sleep Disorders & Therapy

Author(s): Mendlewicz J

Abstract Share this page

Abstract Depression is one of the leading causes of morbidity worldwide and represents a huge burden to society. As with many other psychiatric disorders, a genetic basis for depression has been identified. Evidence for the role of circadian genes in depression is particularly compelling. Circadian gene mutations are also associated with circadian rhythm disorders such as familial advanced sleep phase syndrome, delayed sleep phase syndrome, and non-24-hour sleep-wake syndrome. Such disorders, plus the other manifestations of a disrupted circadian system such as hormone dysregulation, are often observed among those with depression. This suggests a shared aetiology between circadian disruption and depression, although the exact mechanisms underlying the association are unclear. This paper reviews the molecular mechanisms involved in depression, with an emphasis on circadian genes. Twin studies in depression have reported probandwise concordance rates of 40\% and 70\% using narrow and broad diagnostic criteria, respectively, and heritability of over 85\% for bipolar disorder. In association studies, increased susceptibility to depression has been noted in those with polymorphisms in the following: D-amino-acid-oxidase activator/G30 gene complex, glucocorticoid receptor gene, serotonin transporter gene, tryptophan hydroxylase 2 gene, dopamine transporter gene and G protein-coupled receptor 50 gene. Polymorphisms in these genes have also been linked to a better or worse response to antidepressant therapy, an increased likelihood of responding poorly to adversity and increased suicide ideation. Polymorphisms in the CLOCK, BMAL1, Per3 and TIMELESS genes have been associated with susceptibility to mood disorder, and single nucleotide polymorphisms and haplotypes in several circadian genes have been observed among those displaying certain circadian phenotypes, including worse mood in the evening, insomnia in mania and early, middle or late insomnia in depression. Manipulation of the circadian timing system via sleep deprivation, bright light or pharmacological therapy has also been shown to alleviate depressive symptoms, providing further evidence for the role of circadian dysfunction in depression pathophysiology. The new antidepressant agomelatine is the first melatonergic antidepressant with an innovative mode of action: it is a melatonergic MT(1), MT(2) receptor agonist and 5-HT(2c) antagonist, and is able to restore the internal clock, which is profoundly disturbed in depression, thus being efficacious in major depressive disorders. In conclusion, a wealth of evidence is now available supporting a genetic basis for depression. The apparent importance of mutations in the circadian genes in determining disease susceptibility, disease recurrence and response to treatment suggests that the circadian pathway represents an attractive target for pharmacological manipulation to improve management of this debilitating disorder. This article was published in CNS Drugs and referenced in Journal of Sleep Disorders & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords