alexa Dissection of measles virus V protein in relation to its ability to block alpha beta interferon signal transduction.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Ohno S, Ono N, Takeda M, Takeuchi K, Yanagi Y

Abstract Share this page

Abstract Interferon (IFN)-alpha and -beta are the main cytokines for innate immune responses against viral infections. To replicate efficiently in the hosts, viruses have evolved various countermeasures to the IFN response. The V protein of measles virus (MV) has been shown to block IFN-alpha/beta signalling. Here, the wild-type IC-B strain of MV was shown to grow comparably in the presence and absence of IFN-alpha, whereas replication of the Edmonston tag strain recovered from cloned DNA was strongly suppressed in its presence. The V protein of the IC-B strain, but not the Edmonston tag strain, blocked IFN-alpha signalling. The V protein of the Edmonston strain from the ATCC also inhibited IFN-alpha signalling. There were three amino acid differences between the V proteins of the Edmonston ATCC and tag strains, and substitutions of both residues at positions 110 and 272 were required for the Edmonston ATCC V protein to lose IFN-antagonist activity. The P protein of the IC-B strain, which shares the N-terminal 231 aa residues with the V protein, also inhibited IFN-alpha signalling. Indeed, fragments comprising only those 231 residues of the IC-B and Edmonston ATCC V proteins, but not the Edmonston tag V protein, were able to block IFN-alpha signalling. However, the N-terminal region of the Edmonston tag V protein, when attached to the C-terminal region of the Edmonston ATCC V protein, inhibited IFN-alpha signalling. Taken together, our results indicate that both the N- and C-terminal regions contribute to the IFN-antagonist activity of the MV V protein. This article was published in J Gen Virol and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

  • Thomas Böldicke
    Intrabodies against the Polysialyltransferases ST8SiaII and ST8SiaIV inhibit Polysialylation of NCAM in rhabdomyosarcoma tumor cells
    PPT Version | PDF Version
  • Hedef Dhafir El-Yassin
    The Immune Response of Prolactin and the Induction of Tumor Necrosis Factor (TNF) in Iraqi Patients Infected with Hepatitis C Virus
    PPT Version | PDF Version
  • Moshe Giladi
    Tumor Treating Fields (TTFields) induced cancer cell death may be immunogenic resulting in enhanced antitumor efficacy when combined with immune-modulating therapy
    PPT Version | PDF Version
  • Manche Santoshi Kumari
    Prevalence of otological disorders in diabetic patients with hearing loss
    PPT Version | PDF Version
  • M Shahnawaz Khan
    Graphene Oxide @ Gold Nanorods Conjugate for Controlled Release of Doxorubicin in tumor
    PPT Version | PDF Version
  • Ehab Kamal
    Apitherapy in immune mediated disorders
    PPT Version | PDF Version
  • Omar E Franco
    Heterogeneous Tumor Stroma and Prostate Carcinogenesis
    PPT Version | PDF Version
  • Yen-Chein Lai
    Molecular pathogenesis in granulosa cell tumor is not only due to somatic FOXL2 mutation
    PPT Version | PDF Version
  • Babak Behnam
    SLUG and SOX9 Cooperatively Regulate Tumor Initiating Niche Factors in Breast Cancer
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Fan-Gang Tseng
    Fan-Gang-Tseng-National-Tsing-Hua-University-Taiwan-Nano-Micro-fluidic-systems-for-circulating-Tumor-Cells-(CTCs)-rapid-detection-and-diagnosis
    PPT Version | PDF Version
  • Myron R Szewczuk
    Therapeutic targeting neuraminidase-1 in multi-stage of tumorigenesis
    PPT Version | PDF Version
  • Hawa ZE Jaafar
    Involvement of elicitated Labisia pumila Benth. biofluids in the alleviation of chemotoxicity effect and antitumor activity
    PPT Version | PDF Version
  • Abdalla Omar
    Study of Some Egyptian Plants of Potential Use in Some Cases of Hepatic Disorders
    PPT Version | PDF Version
  • Huidi Liu
    Reduced Expression of SOX7 in Ovarian Cancer: a Novel Tumor Suppressor through the Wnt/β-catenin Signaling Pathway
    PPT Version | PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords