alexa Dissection of sexual organ ontogenesis: a genetic analysis of ovule development in Arabidopsis thaliana.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Transcriptomics: Open Access

Author(s): Schneitz K, Hlskamp M, Kopczak SD, Pruitt RE

Abstract Share this page

Abstract Understanding organogenesis remains a major challenge in biology. Specification, initiation, pattern formation and cellular morphogenesis, have to be integrated to generate the final three-dimensional architecture of a multicellular organ. To tackle this problem we have chosen the ovules of the flowering plant Arabidopsis thaliana as a model system. In a first step towards a functional analysis of ovule development, we performed a large-scale genetic screen and isolated a number of sterile mutants with aberrant ovule development, We provide indirect genetic evidence for the existence of proximal-distal pattern formation in the Arabidopsis ovule primordium. The analysis of the mutants has identified genes that act at an intermediate regulatory level and control initiation of morphogenesis in response to proximal-distal patterning. A second group of genes functions at a subordinate control level and regulates general cellular processes of morphogenesis. A large group of male and female sterile mutants shows defects restricted to early or late gametogenesis. In addition, we propose that the mature ovule obtains its overall curved shape by at least three different processes that act in only one domain of the ovule.
This article was published in Development and referenced in Transcriptomics: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

  • Laurence Macia
    Gut microbiota, bacterial metabolites and metabolite sensing GPCRs protect against food allergy
    PPT Version | PDF Version
  • Cormac G M Gahan
    Bacterial bile salt hydrolase in the regulation of host lipid metabolism and circadian rhythm: A role in probiotic function?
    PPT Version | PDF Version
  • Franco Vicariotto
    Probiotics in the treatment of vulvovaginal candidiasis and bacterial vaginosis
    PPT Version | PDF Version
  • Tatiana Barichello
    The neuroimmunological basis of long-term behavioural sequelae in bacterial meningitis
    PPT Version | PDF Version
  • Jianbo Wang
    Transcriptome and small RNA gene expression changes in synthetic allohexaploids of
    PPT Version | PDF Version
  • Saurabh Chaudhary
    De novo transcriptome assembly and identification of cold and freeze responsive genes in sea buckthorn
    PPT Version | PDF Version
  • Babak Behnam
    SLUG and SOX9 Cooperatively Regulate Tumor Initiating Niche Factors in Breast Cancer
    PPT Version | PDF Version
  • Ilana Kolodkin-Gal
    Maintaining motile cells inside the biofilm through cell-to-cell signaling, transcription regulation and evolution
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Ding-Gan Liu
    Independent 3’untranslated region RNA: A novel non-coding regulator RNA
    PPT Version | PDF Version
  • Yan Li
    NDRG2, a new estrogen-targeted gene
    PPT Version | PDF Version
  • Bingsong Zheng
    Identification by deep sequencing and profiling of conserved and novel hickory microRNAs involved in the graft process
    PPT Version | PDF Version
  • Zsolt Boldogkoi
    Transcription Interference Networks examined by Single Molecule Long Read Sequencing Technology
    PPT Version | PDF Version
  • Krzysztof Wieczerzak
    A comparative transcriptome provides candidate genes for determination the cause of males infertility.
    PPT Version | PDF Version
  • C. Diaz
    New Antibacterial Agents against Gram-negative Pathogens from a Fundacion MEDINA’s Microbial Natural Products Collection Screening
    PPT Version | PDF Version

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords