alexa Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): functional characterization of abietadiene levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol abietadienal oxidase (PtAO, CYP720B1).
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Next Generation Sequencing & Applications

Author(s): Ro DK, Bohlmann J

Abstract Share this page

Abstract Diterpene resin acids are prominent defense compounds against insect pests and pathogens in conifers. Biochemical and molecular analyses in grand fir (Abies grandis), Norway spruce (Picea abies), and loblolly pine (Pinus taeda) have identified two classes of genes and enzymes that generate much of the structural diversity of terpenoid defense compounds: The terpenoid synthases (TPS) and cytochrome P450 monooxgenases (P450). Using a single substrate, geranylgeranyl diphosphate, families of single-product and multi-product diterpene synthases generate an array of cyclic diterpene olefins. These diterpenes are converted to diterpene resin acids by activity of one or more P450 enzymes. A few conifer diterpene synthases have previously been cloned and characterized in grand fir and in Norway spruce. We have also previously shown that the loblolly pine P450 abietadienol/abietadienal oxidase (PtAO) catalyzes multiple oxidations of several diterpene alcohols and aldehydes. Conifer diterpene synthases are thought to function in plastids while P450s can also be localized to plastids or to the endoplasmic reticulum (ER). Here, we show that a loblolly pine cDNA (PtTPS-LAS) encodes a typical multi-product conifer diterpene synthase that forms levopimaradiene, abietadiene, palustradiene, and neoabietadiene similar to the grand fir abietadiene synthase and Norway spruce levopimaradiene/abietadiene synthase. Subcellular targeting of PtTPS-LAS and PtAO to plastids and ER, respectively, was shown with green fluorescent fusion protein expression in tobacco cells. These data suggest that enzymes for conifer diterpene resin acid biosynthesis are localized to at least two different subcellular compartments, plastids and ER, requiring efficient transport of intermediates and secretion of diterpene resin acids into the extracelluar space. This article was published in Phytochemistry and referenced in Journal of Next Generation Sequencing & Applications

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords