alexa Diverse mechanisms of anti-androgen action: impact on male rat reproductive tract development.


Journal of Clinical Toxicology

Author(s): Wilson VS, Blystone CR, Hotchkiss AK, Rider CV, Gray LE Jr

Abstract Share this page

Abstract Scientists have identified environmental chemicals that display anti-androgenic activity via multiple mechanisms of action. Early studies focused on pesticides acting as androgen receptor (AR) antagonists but it soon became apparent that was not the only endocrine mode by which compounds affected the androgen signalling pathway. Classes of chemicals currently known to interfere with the androgen signalling pathway include dicarboximide fungicides (e.g. vinclozolin), organochlorine-based insecticides (e.g. p,p'-DDT and -DDE), conazole fungicides (e.g. prochloraz), plasticizers (phthalates) and urea-based herbicides (linuron). Phthalate esters (PEs) and vinclozolin appear to act primarily via a single mechanism of action, while others such as linuron and prochloraz, appear to display dual mechanisms of action. Exposure to PEs decreases mRNA expression of key steroidogenic enzymes and also the peptide hormone insulin-like peptide 3 (insl3) from the foetal Leydig cells. Hence, both androgen- and inls3-dependent tissues are affected. Vinclozolin and procymidone act solely through binding to the AR as antagonists thus blocking the action of androgen at the cellular level but do not affect foetal testosterone synthesis or insl3 gene expression. The compounds linuron and prochloraz are AR antagonists but also inhibit foetal testosterone synthesis, although unlike the PEs, mRNA expression of steroidogenic enzymes and insl3 are not affected. All the above chemicals disrupt androgen signalling in the foetal male rat and produce some malformations in common, but the precise profiles of effects in the offspring are pathognomonic for each mode of action. For example, the 'phthalate syndrome' vs. the 'vinclozolin syndrome' each displays a profile of effects which is clearly different. In summary, as more and more molecular studies with anti-androgenic compounds are conducted, the number of mechanisms by which compounds can affect the androgen signalling pathway is likely to increase. Furthermore, the effects of mixtures of these compounds are just beginning to be explored. This article was published in Int J Androl and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

1-702-714-7001Extn: 9042

General Science

Andrea Jason

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001Extn: 9042

© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version