alexa DL-Homocysteic acid application disrupts calcium homeostasis and induces degeneration of spinal motor neurons in vivo.
Neurology

Neurology

Brain Disorders & Therapy

Author(s): Adalbert R, Engelhardt JI, Sikls L

Abstract Share this page

Abstract Excitotoxicity, autoimmunity and free radicals have been postulated to play a role in the pathomechanism of amyotrophic lateral sclerosis (ALS), the most frequent motor neuron disease. Altered calcium homeostasis has already been demonstrated in Cu/Zn superoxide dismutase transgenic animals, suggesting a role for free radicals in the pathogenesis of ALS, and in passive transfer experiments, modeling autoimmunity. These findings also suggested that yet-confined pathogenic insults, associated with ALS, could trigger the disruption of calcium homeostasis of motor neurons. To test the possibility that excitotoxic processes may also be able to increase calcium in motor neurons, we applied the glutamate analogue DL-homocysteic acid to the spinal cord of rats in vivo and analyzed the calcium distribution of the motor neurons over a 24-h survival period by electron microscopy. Initially, an elevated cytoplasmic calcium level, with no morphological sign of degeneration, was noticed. Later, increasing calcium accumulation was seen in different cellular compartments with characteristic features of alteration at different survival times. This calcium accumulation in organelles was paralleled by their progressive degeneration, which culminated in cell death by the end of the observation time. These findings confirm that increased calcium also plays a role in excitotoxic lesion of motor neurons, in line with previous studies documenting the involvement of calcium ions in motor neuronal injury in other models of the disease as well as elevated calcium in biopsy samples from ALS patients. We suggest that intracellular calcium might be responsible for the interplay between the different pathogenic processes resulting in a uniform clinicopathological picture of the disease. This article was published in Acta Neuropathol and referenced in Brain Disorders & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords