alexa DNA binding of a non-sequence-specific HMG-D protein is entropy driven with a substantial non-electrostatic contribution.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Data Mining in Genomics & Proteomics

Author(s): Dragan AI, Klass J, Read C, Churchill ME, CraneRobinson C,

Abstract Share this page

Abstract The thermal properties of two forms of the Drosophila melanogaster HMG-D protein, with and without its highly basic 26 residue C-terminal tail (D100 and D74) and the thermodynamics of their non-sequence-specific interaction with linear DNA duplexes were studied using scanning and titration microcalorimetry, spectropolarimetry, fluorescence anisotropy and FRET techniques at different temperatures and salt concentrations. It was shown that the C-terminal tail of D100 is unfolded at all temperatures, whilst the state of the globular part depends on temperature in a rather complex way, being completely folded only at temperatures close to 0 degrees C and unfolding with significant heat absorption at temperatures below those of the gross denaturational changes. The association constant and thus Gibbs energy of binding for D100 is much greater than for D74 but the enthalpies of their association are similar and are large and positive, i.e. DNA binding is a completely entropy-driven process. The positive entropy of association is due to release of counterions and dehydration upon forming the protein/DNA complex. Ionic strength variation showed that electrostatic interactions play an important but not exclusive role in the DNA binding of the globular part of this non-sequence-specific protein, whilst binding of the positively charged C-terminal tail of D100 is almost completely electrostatic in origin. This interaction with the negative charges of the DNA phosphate groups significantly enhances the DNA bending. An important feature of the non-sequence-specific association of these HMG boxes with DNA is that the binding enthalpy is significantly more positive than for the sequence-specific association of the HMG box from Sox-5, despite the fact that these proteins bend the DNA duplex to a similar extent. This difference shows that the enthalpy of dehydration of apolar groups at the HMG-D/DNA interface is not fully compensated by the energy of van der Waals interactions between these groups, i.e. the packing density at the interface must be lower than for the sequence-specific Sox-5 HMG box.
This article was published in J Mol Biol and referenced in Journal of Data Mining in Genomics & Proteomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords